Earth’s largest extinction event likely took plants first

Earth’s largest extinction event likely took plants first

Little life could endure the Earth-spanning cataclysm known as the Great Dying, but plants may have suffered its wrath long before many animal counterparts, says new research led by the University of Nebraska-Lincoln.

About 252 million years ago, with the planet’s continental crust mashed into the supercontinent called Pangaea, volcanoes in modern-day Siberia began erupting. Spewing carbon and methane into the atmosphere for roughly 2 million years, the eruption helped extinguish about 96 percent of oceanic life and 70 percent of land-based vertebrates — the largest extinction event in Earth’s history.

Yet the new study suggests that a byproduct of the eruption — nickel — may have driven some Australian plant life to extinction nearly 400,000 years before most marine species perished.

“That’s big news,” said lead author Christopher Fielding, professor of Earth and atmospheric sciences. “People have hinted at that, but nobody’s previously pinned it down. Now we have a timeline.”

The researchers reached the conclusion by studying fossilized pollen, the chemical composition and age of rock, and the layering of sediment on the southeastern cliffsides of Australia. There they discovered surprisingly high concentrations of nickel in the Sydney Basin’s mud-rock — surprising because there are no local sources of the element.

Tracy Frank, professor and chair of Earth and atmospheric sciences, said the finding points to the eruption of lava through nickel deposits in Siberia. That volcanism could have converted the nickel into an aerosol that drifted thousands of miles southward before descending on, and poisoning, much of the plant life there. Similar spikes in nickel have been recorded in other parts of the world, she said.

“So it was a combination of circumstances,” Fielding said. “And that’s a recurring theme through all five of the major mass extinctions in Earth’s history.”

If true, the phenomenon may have triggered a series of others: herbivores dying from the lack of plants, carnivores dying from a lack of herbivores, and toxic sediment eventually flushing into seas already reeling from rising carbon dioxide, acidification and temperatures.

‘It Lets Us See What’s Possible’

One of three married couples on the research team, Fielding and Frank also found evidence for another surprise. Much of the previous research into the Great Dying — often conducted at sites now near the equator — has unearthed abrupt coloration changes in sediment deposited during that span.

Shifts from grey to red sediment generally indicate that the volcanism’s ejection of ash and greenhouse gases altered the world’s climate in major ways, the researchers said. Yet that grey-red gradient is much more gradual at the Sydney Basin, Fielding said, suggesting that its distance from the eruption initially helped buffer it against the intense rises in temperature and aridity found elsewhere.

Though the time scale and magnitude of the Great Dying exceeded the planet’s current ecological crises, Frank said the emerging similarities — especially the spikes in greenhouse gases and continuous disappearance of species — make it a lesson worth studying.

“Looking back at these events in Earth’s history is useful because it lets us see what’s possible,” she said. “How has the Earth’s system been perturbed in the past? What happened where? How fast were the changes? It gives us a foundation to work from — a context for what’s happening now.”

The researchers detailed their findings in the journal Nature Communications. Fielding and Frank authored the study with Allen Tevyaw, graduate student in geosciences at Nebraska; Stephen McLoughlin, Vivi Vajda and Chris Mays from the Swedish Museum of Natural History; Arne Winguth and Cornelia Winguth from the University of Texas at Arlington; Robert Nicoll of Geoscience Australia; Malcolm Bocking of Bocking Associates; and James Crowley of Boise State University.

The National Science Foundation and the Swedish Research Council funded the team’s work.

Story Source:

Materials provided by University of Nebraska-Lincoln. Original written by Scott Schrage. Note: Content may be edited for style and length.

View the Original Article . . .

{authorlink}
https://www.sciencedaily.com/rss/top/environment.xml Top Environment News — ScienceDaily

Top stories featured on ScienceDaily’s Plants & Animals, Earth & Climate, and Fossils & Ruins sections.

https://www.sciencedaily.com/images/scidaily-logo-rss.png

Tasmanian devil cancer unlikely to cause extinction, say experts

Tasmanian devil cancer unlikely to cause extinction, say experts

A new study of Tasmanian devils has revealed that a transmissible cancer which has devastated devil populations in recent years in unlikely to cause extinction of the iconic species.

New research led by Dr Konstans Wells from Swansea University has revealed that it is more likely that the disease will fade-out or that the devils will coexist with Tasmanian Devil Facial Tumour Disease (DFTD) in future.

DFTD typically kills the majority of devils it infects and has wiped out around 80% of wild devils with continuous decline of existing populations since the disease was first identified.

An international team of scientists from the UK, Australia and the USA matched field epidemiological evidence from wild populations collected over a 10-year period in north-west Tasmania with simulation studies, which revealed that DFTD is unlikely to continue causing ongoing population declines of Tasmanian devils in future.

They say the findings of their study, published in Ecology, offers much-needed hope that the species, which is the world’s largest remaining marsupial carnivore, will not necessarily become extinct due to DFTD.

First discovered in north-eastern Tasmania in 1996, DFTD causes tumours to form on the face and neck of the animal. The cancer spreads when the devils bite each other’s faces during fighting, thus killing the animals within six to twenty four months.

Dr Konstans Wells, lead author of the study, said: “Our findings suggest that immediate management interventions are unlikely to be necessary to ensure the survival of Tasmanian devil populations. This is because strong population declines of devils after disease emergence do not necessarily translate into long-term population declines.”

To explore the long-term outcomes of DFTD and devil populations, the researchers conducted a large number of simulations of possible disease spread in devils. Based on evidence such as current infection rates in the wild, the most likely simulation scenarios were selected to explore how DFTD will affect devil populations over the next 100 years. Among the most likely scenarios were those in which DFTD faded out (57% of likely scenarios) or coexisted with devils (22% of likely scenarios).

Co-author of the study, Dr Rodrigo Hamede from the University of Tasmania, said: “With growing evidence that devils are showing signs of adaptation to DFTD and that so far the disease has not caused local extinctions, management actions targeted at understanding the devil’s adaptive strategies to cope with DFTD should be considered.

“Complete eradication of DFTD is not feasible, therefore studying the long-term interactions between devils and tumours will provide a realistic prognosis for the species and at the same time will help us to understand important evolutionary processes. This is particularly relevant given the recent outbreak of a new transmissible cancer — devil facial tumour 2 — affecting devil populations in south-eastern Tasmania. Devils seem to be prone to transmissible cancers, so studying epidemic dynamics and evolutionary responses to this type of diseases should be a priority.”

The research suggests that management efforts to maintain devil populations should be guided by the changing understanding of the long-term outcome of the disease impact on devils.

Dr Wells explained: “Management efforts in wild populations that solely aim to combat the impact of DFTD can be counterproductive if they disrupt long-term forces at work that may eventually lead to stable devil populations that are well able to persist with the cancer.

“Wildlife diseases such as DFTD should not disguise the fact that sufficiently large and undisturbed natural environments are a vital prerequisite for wildlife to persist and eventually cope with obstructions such as infectious diseases without human intervention.”

Story Source:

Materials provided by Swansea University. Note: Content may be edited for style and length.

View the Original Article . . .

{authorlink}
https://www.sciencedaily.com/rss/top/environment.xml Top Environment News — ScienceDaily

Top stories featured on ScienceDaily’s Plants & Animals, Earth & Climate, and Fossils & Ruins sections.

https://www.sciencedaily.com/images/scidaily-logo-rss.png

Researchers race against extinction to uncover tree’s cancer-fighting properties: Are we killing the cure?

Researchers race against extinction to uncover tree’s cancer-fighting properties: Are we killing the cure?

Three Chinese fir trees on a nature reserve in Southeastern China are the last of their kind. As their existence is threatened by human disturbance and climate change, researchers are hurrying to learn everything they can about the tree — which might inspire new and more effective ways to treat various cancers.

Chemists in China were initially studying the tree, Abies beshanzuensis, to look for molecules that might be able to treat diabetes and obesity. Using only bark and needles that fell from the trees, in order to not further disturb the small population, researchers found that the tree’s makeup wasn’t as effective as they’d hoped in treating these diseases.

The tree’s healing powers looked grim until Mingji Dai, an organic chemist at Purdue University, started tinkering with some of its molecules in his lab. His team created synthetic versions of two, and then a few analogs, which have minor structural modifications. In collaboration with Zhong-Yin Zhang, a distinguished professor of medicinal chemistry at Purdue, he found that one of the synthetic analogs was a potent and selective inhibitor of SHP2, an increasingly popular target for cancer treatment. The findings were published in the Journal of the American Chemical Society.

“This is one of the most important anti-cancer targets in the pharmaceutical industry right now, for a wide variety of tumors,” Dai said. “A lot of companies are trying to develop drugs that work against SHP2.”

Cancer was projected to take more than 600,000 lives in the United States alone in 2018, according to the National Cancer Institute. Targeted therapies help treat cancer by interfering with specific proteins that help tumors grow and spread throughout the body. Unlike many of the molecules used to target SHP2 right now, Dai’s (referred to as “compound 30”) forms a chemical bond with the SHP2 protein.

“With others, it’s a looser binding. Ours forms a covalent bond, which is more secure and long-lasting,” Dai said. “But we also wondered whether this type of molecule could interact with other proteins.”

With help from chemical biologists at the Scripps Research Institute in Florida, the team went fishing — in a pond full of proteins. Using a tagged version of compound 29 (which is just a bit structurally different from compound 30) as bait, they caught POLE3, an enzyme that helps synthesize and repair DNA molecules.

This told the team that POLE3 and compound 29 were interacting, but not much else. Alone, compound 29 had no effect on cancer cells. But they knew this compound was drawn to a target protein involved in DNA synthesis, so they started looking for FDA-approved cancer drugs that target DNA for potential combination therapy. They found Etoposide, a DNA-damaging drug used to treat multiple types of cancer. Together, the results were promising.

“Compound 29 alone doesn’t kill cancer, but when you combine it with Etoposide, the drug is much more effective,” Dai said. “This could improve some of the cancer drugs used today, and it also tells us something new about the function of POLE3. People weren’t targeting this protein for cancer treatment before, but our findings offer a new strategy for killing cancer cells.”

The work was supported by funding from the National Science Foundation, National Institutes of Health, Eli Lilly and Amgen.

Story Source:

Materials provided by Purdue University. Note: Content may be edited for style and length.

View the Original Article . . .

{authorlink}
https://www.sciencedaily.com/rss/top/environment.xml Top Environment News — ScienceDaily

Top stories featured on ScienceDaily’s Plants & Animals, Earth & Climate, and Fossils & Ruins sections.

https://www.sciencedaily.com/images/scidaily-logo-rss.png

Biggest mass extinction caused by global warming leaving ocean animals gasping for breath

Biggest mass extinction caused by global warming leaving ocean animals gasping for breath

The largest extinction in Earth’s history marked the end of the Permian period, some 252 million years ago. Long before dinosaurs, our planet was populated with plants and animals that were mostly obliterated after a series of massive volcanic eruptions in Siberia.

Fossils in ancient seafloor rocks display a thriving and diverse marine ecosystem, then a swath of corpses. Some 96 percent of marine species were wiped out during the “Great Dying,” followed by millions of years when life had to multiply and diversify once more.

What has been debated until now is exactly what made the oceans inhospitable to life — the high acidity of the water, metal and sulfide poisoning, a complete lack of oxygen, or simply higher temperatures.

New research from the University of Washington and Stanford University combines models of ocean conditions and animal metabolism with published lab data and paleoceanographic records to show that the Permian mass extinction in the oceans was caused by global warming that left animals unable to breathe. As temperatures rose and the metabolism of marine animals sped up, the warmer waters could not hold enough oxygen for them to survive.

The study is published in the Dec. 7 issue of Science.

“This is the first time that we have made a mechanistic prediction about what caused the extinction that can be directly tested with the fossil record, which then allows us to make predictions about the causes of extinction in the future,” said first author Justin Penn, a UW doctoral student in oceanography.

Researchers ran a climate model with Earth’s configuration during the Permian, when the land masses were combined in the supercontinent of Pangaea. Before ongoing volcanic eruptions in Siberia created a greenhouse-gas planet, oceans had temperatures and oxygen levels similar to today’s. The researchers then raised greenhouse gases in the model to the level required to make tropical ocean temperatures at the surface some 10 degrees Celsius (20 degrees Fahrenheit) higher, matching conditions at that time.

The model reproduces the resulting dramatic changes in the oceans. Oceans lost about 80 percent of their oxygen. About half the oceans’ seafloor, mostly at deeper depths, became completely oxygen-free.

To analyze the effects on marine species, the researchers considered the varying oxygen and temperature sensitivities of 61 modern marine species — including crustaceans, fish, shellfish, corals and sharks — using published lab measurements. The tolerance of modern animals to high temperature and low oxygen is expected to be similar to Permian animals because they had evolved under similar environmental conditions. The researchers then combined the species’ traits with the paleoclimate simulations to predict the geography of the extinction.

“Very few marine organisms stayed in the same habitats they were living in — it was either flee or perish,” said second author Curtis Deutsch, a UW associate professor of oceanography.

The model shows the hardest hit were organisms most sensitive to oxygen found far from the tropics. Many species that lived in the tropics also went extinct in the model, but it predicts that high-latitude species, especially those with high oxygen demands, were nearly completely wiped out.

To test this prediction, co-authors Jonathan Payne and Erik Sperling at Stanford analyzed late-Permian fossil distributions from the Paleoceanography Database, a virtual archive of published fossil collections. The fossil record shows where species were before the extinction, and which were wiped out completely or restricted to a fraction of their former habitat.

The fossil record confirms that species far from the equator suffered most during the event.

“The signature of that kill mechanism, climate warming and oxygen loss, is this geographic pattern that’s predicted by the model and then discovered in the fossils,” Penn said. “The agreement between the two indicates this mechanism of climate warming and oxygen loss was a primary cause of the extinction.”

The study builds on previous work led by Deutsch showing that as oceans warm, marine animals’ metabolism speeds up, meaning they require more oxygen, while warmer water holds less. That earlier study shows how warmer oceans push animals away from the tropics.

The new study combines the changing ocean conditions with various animals’ metabolic needs at different temperatures. Results show that the most severe effects of oxygen deprivation are for species living near the poles.

“Since tropical organisms’ metabolisms were already adapted to fairly warm, lower-oxygen conditions, they could move away from the tropics and find the same conditions somewhere else,” Deutsch said. “But if an organism was adapted for a cold, oxygen-rich environment, then those conditions ceased to exist in the shallow oceans.”

The so-called “dead zones” that are completely devoid of oxygen were mostly below depths where species were living, and played a smaller role in the survival rates. “At the end of the day, it turned out that the size of the dead zones really doesn’t seem to be the key thing for the extinction,” Deutsch said. “We often think about anoxia, the complete lack of oxygen, as the condition you need to get widespread uninhabitability. But when you look at the tolerance for low oxygen, most organisms can be excluded from seawater at oxygen levels that aren’t anywhere close to anoxic.”

Warming leading to insufficient oxygen explains more than half of the marine diversity losses. The authors say that other changes, such as acidification or shifts in the productivity of photosynthetic organisms, likely acted as additional causes.

The situation in the late Permian — increasing greenhouse gases in the atmosphere that create warmer temperatures on Earth — is similar to today.

“Under a business-as-usual emissions scenarios, by 2100 warming in the upper ocean will have approached 20 percent of warming in the late Permian, and by the year 2300 it will reach between 35 and 50 percent,” Penn said. “This study highlights the potential for a mass extinction arising from a similar mechanism under anthropogenic climate change.”

View the Original Article . . .

{authorlink}
https://www.sciencedaily.com/rss/top/environment.xml Top Environment News — ScienceDaily

Top stories featured on ScienceDaily’s Plants & Animals, Earth & Climate, and Fossils & Ruins sections.

https://www.sciencedaily.com/images/scidaily-logo-rss.png

Climate change risks ‘extinction domino effect’: Loss of animal or plant species to climate change causes global ‘extinction domino effect’

Climate change risks ‘extinction domino effect’: Loss of animal or plant species to climate change causes global ‘extinction domino effect’

New research reveals the extinction of plant or animal species from extreme environmental change increases the risk of an ‘extinction domino effect’ that could annihilate all life on Earth.

This would be the worst-case scenario of what scientists call ‘co-extinctions’, where an organism dies out because it depends on another doomed species, with the findings published today in the journal Scientific Reports.

Think of a plant’s flower pollinated by only one species of bee — if the bee becomes extinct, so too will the plant eventually.

“Even the most resilient species will inevitably fall victim to the synergies among extinction drivers as extreme stresses drive ecosystems to collapse.” says lead author Dr Giovanni Strona of the European Commission’s Joint Research Centre based in Ispra in northern Italy.

Researchers from Italy and Australia simulated 2,000 ‘virtual earths’ linking animal and plant species. Using sophisticated modelling, they subjected the virtual earths to catastrophic environmental changes that ultimately annihilated all life.

Examples of the kinds of catastrophes they simulated included runaway global warming, scenarios of ‘nuclear winter’ following the detonation of multiple atomic bombs, and a large asteroid impact.

“What we were trying to test is whether the variable tolerances to extreme global heating or cooling by different species are enough to explain overall extinction rates,”

“But because all species are connected in the web of life, our paper demonstrates that even the most tolerant species ultimately succumb to extinction when the less-tolerant species on which they depend disappear.”

“Failing to take into account these co-extinctions therefore underestimates the rate and magnitude of the loss of entire species from events like climate change by up to 10 times,” says co-author Professor Bradshaw of Flinders University in South Australia

Professor Bradshaw and Dr Strona say that their virtual scenarios warn humanity not to underestimate the impact of co-extinctions.

“Not taking into account this domino effect gives an unrealistic and exceedingly optimistic perspective about the impact of future climate change,” warns Professor Bradshaw.

It can be hard to imagine how the demise of a small animal or plant matters so much, but the authors argue that tracking species up to total annihilation demonstrates how the loss of one can amplify the effects of environmental change on the remainder.

“Another really important discovery was that in the case of global warming in particular, the combination of intolerance to heat combined with co-extinctions mean that 5-6 degrees of average warming globally is enough to wipe out most life on the planet,” says Dr Strona.

Professor Bradshaw further warns that their work shows how climate warming creates extinction cascades in the worst possible way, when compared to random extinctions or even from the stresses arising from nuclear winter.

Story Source:

Materials provided by Flinders University. Note: Content may be edited for style and length.

View the Original Article . . .

{authorlink}
https://www.sciencedaily.com/rss/top/environment.xml Top Environment News — ScienceDaily

Top stories featured on ScienceDaily’s Plants & Animals, Earth & Climate, and Fossils & Ruins sections.

https://www.sciencedaily.com/images/scidaily-logo-rss.png

Mammals cannot evolve fast enough to escape current extinction crisis

Mammals cannot evolve fast enough to escape current extinction crisis

We humans are exterminating animal and plant species so quickly that nature’s built-in defence mechanism, evolution, cannot keep up. An Aarhus-led research team calculated that if current conservation efforts are not improved, so many mammal species will become extinct during the next five decades that nature will need 3-5 million years to recover.

There have been five upheavals over the past 450 million years when the environment on our planet has changed so dramatically that the majority of Earth’s plant and animal species became extinct. After each mass extinction, evolution has slowly filled in the gaps with new species.

The sixth mass extinction is happening now, but this time the extinctions are not being caused by natural disasters; they are the work of humans. A team of researchers from Aarhus University and the University of Gothenburg has calculated that the extinctions are moving too rapidly for evolution to keep up.

If mammals diversify at their normal rates, it will still take them 5-7 million years to restore biodiversity to its level before modern humans evolved, and 3-5 million years just to reach current biodiversity levels, according to the analysis, which was published recently in the scientific journal, PNAS.

Some species are more distinct than others

The researchers used their extensive database of mammals, which includes not only species that still exist, but also the hundreds of species that lived in the recent past and became extinct as Homo sapiens spread across the globe. This meant that the researchers could study the full impact of our species on other mammals.

However, not all species have the same significance. Some extinct animals, such as the Australian leopard-like marsupial lion Thylacoleo, or the strange South American Macrauchenia (imagine a lama with an elephant trunk) were evolutionary distinct lineages and had only few close relatives. When these animals became extinct, they took whole branches of the evolutionary tree of life with them. We not only lost these species, we also lost the unique ecological functions and the millions of years of evolutionary history they represented.

“Large mammals, or megafauna, such as giant sloths and sabre-toothed tigers, which became extinct about 10,000 years ago, were highly evolutionarily distinct. Since they had few close relatives, their extinctions meant that entire branches of Earth’s evolutionary tree were chopped off” says palaeontologist Matt Davis from Aarhus University, who led the study. And he adds:

“There are hundreds of species of shrew, so they can weather a few extinctions. There were only four species of sabre-toothed tiger; they all went extinct.”

Long waits for replacement rhinos

Regenerating 2.5 billion years of evolutionary history is hard enough, but today’s mammals are also facing increasing rates of extinction. Critically endangered species such as the black rhino are at high risk of becoming extinct within the next 50 years. Asian elephants, one of only two surviving species of a once mighty mammalian order that included mammoths and mastodons, have less than a 33 percent chance of surviving past this century.

The researchers incorporated these expected extinctions in their calculations of lost evolutionary history and asked themselves: Can existing mammals naturally regenerate this lost biodiversity?

Using powerful computers, advanced evolutionary simulations and comprehensive data about evolutionary relationships and body sizes of existing and extinct mammals, the researchers were able to quantify how much evolutionary time would be lost from past and potential future extinctions as well as how long recovery would take.

The researchers came up with a best-case scenario of the future, where humans have stopped destroying habitats and eradicating species, reducing extinction rates to the low background levels seen in fossils. However, even with this overly optimistic scenario, it will take mammals 3-5 million years just to diversify enough to regenerate the branches of the evolutionary tree that they are expected to lose over the next 50 years. It will take more than 5 million years to regenerate what was lost from giant Ice Age species.

Prioritizing conservation work

“Although we once lived in a world of giants: giant beavers, giant armadillos, giant deer, etc., we now live in a world that is becoming increasingly impoverished of large wild mammalian species. The few remaining giants, such as rhinos and elephants, are in danger of being wiped out very rapidly,” says Professor Jens-Christian Svenning from Aarhus University, who heads a large research program on megafauna, which includes the study.

The research team doesn’t have only bad news, however. Their data and methods could be used to quickly identify endangered, evolutionarily distinct species, so that we can prioritise conservation efforts, and focus on avoiding the most serious extinctions.

As Matt Davis says: “It is much easier to save biodiversity now than to re-evolve it later.”

View the Original Article . . .

{authorlink}
https://www.sciencedaily.com/rss/top/environment.xml Top Environment News — ScienceDaily

Top stories featured on ScienceDaily’s Plants & Animals, Earth & Climate, and Fossils & Ruins sections.

https://www.sciencedaily.com/images/scidaily-logo-rss.png

Geologists uncover new clues about largest mass extinction ever

Geologists uncover new clues about largest mass extinction ever

A new study could help explain the driving force behind the largest mass extinction in the history of earth, known as the End-Permian Extinction.

Continue reading . . .

https://www.sciencedaily.com/rss/top/environment.xml Top Environment News — ScienceDaily

Top stories featured on ScienceDaily’s Plants & Animals, Earth & Climate, and Fossils & Ruins sections.

https://www.sciencedaily.com/images/scidaily-logo-rss.png

Laziness helped lead to extinction of Homo erectus

Laziness helped lead to extinction of Homo erectus,

New archaeological research has found that Homo erectus, an extinct species of primitive humans, went extinct in part because they were ‘lazy’.

,

Continue reading . . .

, ,
https://www.sciencedaily.com/rss/top/environment.xml, Top Environment News — ScienceDaily,

Top stories featured on ScienceDaily’s Plants & Animals, Earth & Climate, and Fossils & Ruins sections.

, https://www.sciencedaily.com/images/scidaily-logo-rss.png,
,

What’s on TV: ‘No Man’s Sky,’ ‘Extinction’ and ‘Ready Player One’

What’s on TV: ‘No Man’s Sky,’ ‘Extinction’ and ‘Ready Player One’

,

Discovery has its annual Shark Week event again, and from what I can see, at least there are no alien shark documentaries on the list this year. Meanwhile Netflix is premiering its latest studio castoff sci-fi film, Extinction, as No Man’s Sky will r…

,


Continue reading . . .

, ,
https://www.engadget.com/rss.xml, Engadget RSS Feed,

Engadget is a web magazine with obsessive daily coverage of everything new in gadgets and consumer electronics

, https://www.blogsmithmedia.com/www.engadget.com/media/feedlogo.gif?cachebust=true,
,

Australia has a new venomous snake — And it may already be threatened

Australia has a new venomous snake — And it may already be threatened,

The ink has not yet dried on a scientific paper describing a new species of snake, yet the reptile may already be in danger of extinction due to mining. A team of biologists discovered a new species of bandy-bandy snake at Weipa on the west coast of the Cape York Peninsula.

,

Continue reading . . .

, ,
https://www.sciencedaily.com/rss/top/environment.xml, Top Environment News — ScienceDaily,

Top stories featured on ScienceDaily’s Plants & Animals, Earth & Climate, and Fossils & Ruins sections.

, https://www.sciencedaily.com/images/scidaily-logo-rss.png,
,

Blockbuster is one store away from extinction in the US

Blockbuster is one store away from extinction in the US,

Although it’s well known that there aren’t many Blockbuster stores left open, the announced closure of Alaska’s remaining two outlets is a deathblow. Kevin Daymude, the General Manager of Blockbuster Alaska confirmed via a Facebook post that rental o…

,


Continue reading . . .

, ,
https://www.engadget.com/rss.xml, Engadget RSS Feed,

Engadget is a web magazine with obsessive daily coverage of everything new in gadgets and consumer electronics

, https://www.blogsmithmedia.com/www.engadget.com/media/feedlogo.gif?cachebust=true,
,

Watch the trailer for Netflix’s resurrected sci-fi thriller ‘Extinction’

Watch the trailer for Netflix’s resurrected sci-fi thriller ‘Extinction’

,

Netflix has just dropped the trailer for its science-fiction thriller Extinction, in which a man’s nightmares of losing his family morph into a reality as alien invaders try to wipe out humanity. The movie has a strong cast, including Ant-Man and The…

,


Continue reading . . .

, ,
https://www.engadget.com/rss.xml, Engadget RSS Feed,

Engadget is a web magazine with obsessive daily coverage of everything new in gadgets and consumer electronics

, https://www.blogsmithmedia.com/www.engadget.com/media/feedlogo.gif?cachebust=true,
,

New study questions when the brown bear became extinct in Britain

New study questions when the brown bear became extinct in Britain,

New research provides insights into the extinction of Britain’s largest native carnivore. The study is the first of its kind to collate and evaluate the evidence for the brown bear in post-Ice Age Britain.

,

Continue reading . . .

, ,
https://www.sciencedaily.com/rss/top/environment.xml, Top Environment News — ScienceDaily,

Top stories featured on ScienceDaily’s Plants & Animals, Earth & Climate, and Fossils & Ruins sections.

, https://www.sciencedaily.com/images/scidaily-logo-rss.png,
,

Climate change linked to potential population decline in bees

Climate change linked to potential population decline in bees,

A new study has found that climate change may drive local extinction of mason bees in Arizona and other naturally warm climates.

,

Continue reading . . .

, ,
https://www.sciencedaily.com/rss/top/environment.xml, Top Environment News — ScienceDaily,

Top stories featured on ScienceDaily’s Plants & Animals, Earth & Climate, and Fossils & Ruins sections.

, https://www.sciencedaily.com/images/scidaily-logo-rss.png,
,

What caused the mass extinction of Earth’s first animals?

What caused the mass extinction of Earth’s first animals?

,

Fossil records tell us that the first macroscopic animals appeared on Earth about 575 million years ago. Twenty-four million years later, the diversity of animals began to mysteriously decline, leading to Earth’s first know mass extinction event. A research team is helping to unravel this mystery and understand why this extinction event happened, what it can tell us about our origins, and how the world as we know it came to be.

,

Continue reading . . .

, ,
https://www.sciencedaily.com/rss/top/environment.xml, Top Environment News — ScienceDaily,

Top stories featured on ScienceDaily’s Plants & Animals, Earth & Climate, and Fossils & Ruins sections.

, https://www.sciencedaily.com/images/scidaily-logo-rss.png,
,